
Scalable Software-Defined Networking through
Hybrid Switching

Hongli Xu1 He Huang2 Shigang Chen3 Gongming Zhao1
Email: xuhongli@ustc.edu.cn, huangh@suda.edu.cn, sgchen@cise.ufl.edu,zgm1993@mail.ustc.edu.cn

1School of Computer Science and Technology, University of Science and Technology of China, China
2School of Computer Science and Technology, Schoow University, China

3Department of Computer & Information of Science & Engineering, University of Florida, USA

Abstract—Traditional networks rely on aggregate routing and
decentralized control to achieve scalability. On the contrary,
software-defined networks achieve near optimal network perfor-
mance and policy-based management through per-flow routing
and centralized control, which however face scalability challenge
due to (1) limited TCAM and on-die memory for storing the
forwarding table and (2) per-flow communication/computation
overhead at the controller. This paper presents a novel hybrid
switching design, which integrates traditional switching and SDN
switching for the purpose of achieving both scalability and optimal
performance. We show that the integration also leads to unex-
pected benefits of making both types of switching more efficient
under the hybrid design. Numerical evaluation demonstrates the
superior performance of hybrid switching when comparing with
the state-of-the-art SDN design.

I. INTRODUCTION

Scalability has been a core issue in the history of large
network development. The conventional wisdom holds two
design principles: aggregate routing paths and distributed con-
trol. Modern switches/routers forward packets from incoming
ports to outgoing ports via switching fabric. The data plane
uses ASIC hardware and on-die memory (such as SRAM) to
process packets in real time at high speed. The on-die memory
is typically a few megabytes. Increasing on-die memory is
technically feasible, but it comes with a much higher price
tag and access time is longer. There is a huge incentive to
keep on-die memory small because smaller memory can be
made faster and cheaper. To make the matter more challeng-
ing, limited on-die memory may have to be shared among
routing/performance/measurement/security functions that are
implemented on the same chip. The amount of on-die memory
allocated for storing the forwarding (or routing) table will be
limited, which makes per-flow routing (i.e., one table entry
for each flow) unscalable to a large network with millions of
concurrent flows. To address this scalability problem, the clas-
sical design principle is to perform destination-based aggregate
routing (instead of per-flow routing), where all flows with the
same destination address or address prefix will share the same
path. The second design principle is to decentralize the routing
control function in order to avoid a single point of failure or
performance bottleneck.

The emergence of software-defined networking (SDN) [1]
[2] [3] [4] [5] [6] [7] has shattered both principles. It uses a cen-
tralized controller to determine per-flow paths and deploy these
paths to the switches’ forwarding tables. With the network-

wide information at one place, the centralized control makes
it far easier to enforce global policies and achieve optimal
traffic management. These benefits outweigh the scalability
concern in the compromise made by the SDN design. But the
scalability problem will not go away under per-flow routing
and centralized control. Today’s SDN switches typically have
a few thousands of entries in their on-die flow tables. Even
the high-end Broadcom Trident2 chipset supports only 16K
forwarding rules [5]. When there are too many flows to fit in
the flow table, we will have to reject some flows [5], replace
existing flows in the table with new flows (which causes churns
and increases the load of the controller to repetitively deploy
paths for the same flows), or bring aggregate routing back.

Forwarding rules with wildcards were proposed for aggre-
gate routing [4]. But wildcard rules can only be implemented
through TCAM (Ternary Content Addressable Memory), which
is small, costly and energy-hungry. The small number of
wildcard rules may result in aggressive aggregation when
facing a large number of excess flows, whereas the benefits of
SDN rest upon its ability of differentiating arbitrary individual
flows. Moreover, there lacks systematic studies on how to
construct and manage optimal wildcard rules in a dynamic,
heavily loaded network, which is a challenging problem. There-
fore, alternative or complementary solutions to the scalability
problem are under call.

If traditional aggregate routing and decentralized control
help scalability while SDN helps performance, our idea is
to integrate them for hybrid switching, which achieves the
benefits of both worlds and is not subject to the restriction of
TCAM. This paper presents a novel hybrid switching design.
On the one hand, it leverages the mature methods of traditional
switching to achieve scalability by avoiding per-flow commu-
nication/computation overhead to the controller and reducing
the number of forwarding rules needed to support a large
number of flows. On the other hand, it exploits the flexibility of
SDN switching to achieve near optimal network performance
without overflowing the forwarding table. More interestingly,
we show that the integration of traditional switching and SDN
switching brings unexpected benefits to each other. The SDN’s
centralized control will help implement traditional switching
much more efficiently. In the meanwhile, with a hybrid de-
ployment design, we show that traditional aggregate routing
will help greatly reduce the overhead of deploying SDN paths.
We also discuss how to perform per-flow traffic measurement

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

978-1-5090-5336-0/17/$31.00 ©2017 IEEE
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 03,2020 at 10:59:16 UTC from IEEE Xplore. Restrictions apply.

2

without using the OpenFlow counters in the forwarding table,
which is important in our hybrid switching design where many
(or even most) flows are not in the table. Finally, we give a case
study on how to perform global optimization at the controller
for flow re-routing under hybrid switching. Our numerical
evaluation shows that the proposed hybrid switching design
outperforms wildcard-based DevoFlow [4] by significantly
lowering the number of forwarding rules under the same traffic
conditions or achieves much better network performance under
the same forwarding-table size.

It should be pointed out that our hybrid switching study is
fundamentally different from the prior work on partial or mixed
SDN networks where SDN switches and traditional devices co-
exist [3] [8] [9] [10]. The concern there is how to make these
two types of switches operate together. Their SDN switches
face the same scalability problem as described earlier. This
paper does not consider partial SDN networks. We study full
SDN networks where traditional switching is integrated with
SDN switching at all devices to improve scalability.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III introduces the switching,
routing, and hybrid schemes. We present the design of the
hybrid switching in Section IV. The simulation results are
presented in Section V. Section VI draws the conclusion.

II. RELATED WORK

SDN was introduced to improve network performance
through centralized control [1]. For example, the centralized
traffic engineering service of B4 [2] was able to drive links to
near 100% utilization, with load balancing among alternative
paths. However, the limited size of the forwarding table and the
communication/computation/management load at the controller
place constraint on the scalability of such a centralized design.

To address these problems, the prior art mainly uses wild-
cards. The Plug-n-Serve system [11] and the Aster*x system
[6] use wildcards to aggregate multiple flows into a single rule
(occupying one table entry). Their use of wildcards is limited
to the suffixes of source address. But as each wildcard rule
bundles many flows together based on their address adjacency,
it partially compromises the SDN’s flexibility of differentiating
arbitrary individual flows in traffic engineering.

Hedera [12] was designed to re-route large flows in a
datacenter network that has a structured topology such as fat
tree [13] to provide probabilistic default path selection among
multiple alternative choices. DevoFlow [4] is more general
for arbitrary network topologies. It combines pre-deployed
wildcard rules and dynamically-established exact rules, with
a design goal of reducing the need to involve the controller
in setting up paths for new flows. Limited by the small size
of TCAM, the number of wildcard rules is small, and each
wildcard rule may have to match numerous flows. In order to
differentiate individual flows (so as to measure their individual
sizes and re-route them as needed for load balancing), when a
new flow matches a wildcard rule, an exact rule specifically for
that flow will be created based on the template of the wildcard
rule, without involving the controller. DevoFlow successfully
solves the controller’s load problem, but it does not address the

problem of limited table size, particularly if we want to retain
the flexibility of differentiating arbitrary individual flows. It
still uses per-flow rules, each costing hundreds of bits.

Cohen et al. [5] studied the effect of forwarding-table size
on network utilization. They formulated this problem as an
NP-hard optimization problem and presented approximate al-
gorithms. They assumed that when a switch’s forwarding table
is full, new flows will simply be dropped. Huang et al. [14]
considered splittable flows, each of which is allowed to follow
multiple paths to improve network utilization. They studied
joint optimization of rule placement and traffic engineering
for QoS provisioning. Our paper considers unsplittable flows,
such as TCP flows whose window adaptation may be adversely
affected if packets of the same flow follow different paths.

III. SWITCHING, ROUTING, AND HYBRID

A. Traditional Switching

A traditional Ethernet switch uses a switch table to learn
reachability information from the packets (or data frames in
layer-2 terminology) that it receives. When a switch receives a
frame from a port, it learns that the source MAC address in the
frame header can be reached from that port. This information
is stored in the switch table where each entry contains an MAC
address and a port number.

If a switch receives a frame whose destination MAC address
is in the switch table, the switch will forward the packet to the
corresponding port. Otherwise, it will forward the frame to all
ports except for the port from which the frame is received,
generating a broadcast. For two-way communication between
two hosts, broadcast will happen only once because the first
exchange between the hosts will let all switches along the
communication path learn how to reach them. To achieve high
throughput, the switch table is often implemented as a hash
table in SRAM [15].

The above design has the advantage of high switching ef-
ficiency, low processing overhead, and low hardware/software
cost. It can scale to very large networks. But it does not provide
path selection and traffic measurement in support of network-
wide traffic engineering. Packets are forwarded along fixed
paths determined by the network topology without the input
of dynamic load conditions or user-specified traffic policies.

B. Traditional Routing

Routers or layer-3 switches are able to perform distributed
path selection through routing protocols such as OSPF [16] for
intra-domain routing or BGP [17] for inter-domain routing.
The modern router architecture consists of a control plane,
where the routing protocols and management functions are
implemented, and a data plane, which handles packet forward-
ing at high speed. To achieve high throughput, the routing
table can be cached in on-die SRAM at the arrival network
interface. Each routing-table entry consists of a destination
address prefix, an output port, and other fields.

The path selection is coarse-grained. It is destination-based,
not flow-based, which helps reduce the table size. There may
be many flows from a source network to a destination network.
They will all follow the same path because they share the

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 03,2020 at 10:59:16 UTC from IEEE Xplore. Restrictions apply.

3

same destination address prefix. This limits the flexibility in
offering quality of service, balancing load, utilizing the under-
used alternative paths, or performing flow-level management
policies.

C. Software-Defined Switching

Comparing with traditional switching/routing, a fundamental
difference of the SDN architecture is its centralized control.
An SDN network consists of three types of devices: a central
controller, SDN switches that are inter-connected to form a
network, and end hosts that are connected to the switches.
An SDN switch has a forwarding table specifying per-flow
paths. Each table entry contains a forwarding rule, which
has 10 fields defined in OpenFlow [18], specifying source
MAC address, destination MAC address, source IP address,
destination IP address, protocol, source port, destination port,
output port, instruction, and stat counters, totaling 288 bits [1].
The forwarding table is typically implemented in TCAM to
support wildcard fields and parallel lookup of all table entries.
For exact rules without wildcards, they may be implemented
in TCAM or SRAM. Although we view the forwarding table
logically as a single table, it may be implemented by multi-
tiered tables [19].

When a switch receives a packet, it matches the fields in the
packet’s headers against the table. If there is a matching entry,
the packet is handled according to the instruction field, which
may drop, log, or forward the packet to the output port. When
there is no matching entry, the switch sends a request carrying
the packet header to the controller which selects a path for
the flow and installs proper rules on the switches along the
path. The controller knows the network topology and collects
traffic statistics from the switches. With this information and
user-defined policies, the controller makes path selection.

The centralized control architecture is simple. It takes the
control plane out of the devices and pushes most of the
complexity to the controller, leaving the switches only with
its data plane. Not only does this simplify the data-forwarding
devices, but the centralized control makes it easier to enforce
complex traffic management policies.

However, the shortcomings of the centralized control are
also obvious. The controller can become a performance bottle-
neck. It has to set up the paths of all flows, incurring per-
flow computation overhead for path selection and per-flow
communication overhead of transiting a packet header to the
controller and the forwarding rules back to the switches along
the selected path, together with acknowledgement packets,
as well as flow statistics collection. Such per-flow overhead
becomes significant when most flows are short with only a
small number of packets, which is unfortunately the common
case [15].

Wildcard rules help relieve the problem by aggregating
multiple individual flows into a single entry. However, the
aggregation is based on the adjacency of the addresses/ports,
not based on the individual flows’ policy/performance require-
ments. Because TCAM is costly and uses a lot of energy,
the number of wildcard rules will be small, which means that
aggressive aggregation will be necessary for a large network

with numerous flows. This certainly limits how individual flows
can be routed across the network for best overall performance.

D. Idea of Hybrid Switching

Both traditional switching/routing and SDN switching have
pros and cons. The former adopts coarse-grained, destination-
based path selection for space saving. With careful use of
available table space, today’s switches and routers are able to
scale to very large networks. The latter provides fine-grained
path selection and management functions at the flow level.
On the one hand, fine-grained per-flow paths require more
forwarding rules. But on the other hand, each forwarding rule
takes much more space than an entry in the traditional switch
table or routing table. That means the number of available
forwarding rules will be smaller, given the same memory space.
This is even more true if TCAM is used for implementing the
forwarding table. Fewer forwarding rules in availability and
more rules in demand contradict each other in system design.

To solve this problem and relieve the computation/commu
nication bottleneck at the controller, we propose hybrid switch-
ing that combines traditional switching/routing and SDN
switching for the benefits of both worlds. We refer to the
forwarding paths used in traditional switching/routing as tradi-
tional paths, and the path in SDN switching as SDN paths. A
device that performs hybrid switching is called a hybrid switch,
and its benefits are summarized below.

First, studies on real network traffic showed that most flows
were short-lived with light traffic [20]. Routing them via
SDN’s forwarding tables has little lasting impact on network
performance and does not justify the associated overhead.
Moreover, it causes additional delay due to communication
with the controller, path selection and deployment, which hurts
flow performance. With hybrid switching, we will direct these
flows through the traditional paths, avoiding per-flow overhead
to the controller and reducing the number of forwarding rules
needed.

Second, studies also showed that the elephant flows domi-
nate in traffic volume although their number may be relatively
small [20]. From the traffic engineering’s point of view, it is
economic to focus on these flows and route them via optimal
SDN paths for desired network performance. SDN switching
allows us to directly control a selected number of flows that
have the most impact.

Third, with the help of centralized control from SDN, we
will be able to implement traditional switching/routing much
more efficiently. With the help of traditional paths, we will be
able to implement SDN paths much more efficiently. Hybrid
switching is not a simple combination of SDN switching and
traditional switching/routing, but instead a full integration, in
which the two are inter-twined and help each other to make
both perform better.

Note that in the rest of the paper, whenever we refer to
forwarding table, we imply SDN switching. Similarly, switch
table implies traditional switching, and routing table implies
traditional routing.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 03,2020 at 10:59:16 UTC from IEEE Xplore. Restrictions apply.

4

E. Dual Switch v.s. Hybrid Switch

A dual switch is a simple combination of an SDN switch
and a traditional switch. In practice, it can be used in either
role. When it is configured for SDN switching, it does not
use its switch table; when it is configured for traditional
switching, it does not use its forwarding table. Hence, a dual
switch is different than a hybrid switch, which integrates SDN
switching and traditional switching into one. As we will see
shortly, the implementation of traditional switching in a hybrid
switch is different from the old way (Section III-B; it involves
the controller!). As far as we know, there are dual switches
available today, but not hybrid switches.

IV. DESIGN OF HYBRID SWITCHING

This section goes step by step in explaining our design of
hybrid switching. First, we discuss how to implement tradi-
tional switching and traditional routing more efficiently with
the help of a centralized controller. Second, we integrate SDN
switching with traditional switching/routing. Third, we discuss
how to identify large flows by per-flow statistics measurement
in a compact space without using the counters in the forwarding
tables. Fourth, we design hybrid path deployment that exploits
traditional paths to reduce the number of forwarding rules
needed for SDN paths. Fifth, we combine all the pieces into
an overall design of hybrid switching.

A. Traditional Switching with A Controller

We consider an SDN network where each switch also imple-
ments a traditional switch table, in addition to the forwarding
table for SDN switching. We explain how to integrate switch
tables into the SDN architecture and implement them more
efficiently. Before we proceed, we stress that this work is
different from research on a partial SDN network [8], which
is a mix of SDN switches and traditional switches, where
SDN switches are dual switches (Section III-E), allowing
them to operate with neighboring traditional switches. In this
work, we assume a full SDN network where all switches
are SDN switches. More precisely, they are hybrid switches,
implementing the traditional switch tables with the help of a
centralized controller.

�������	
��
�
������������
�

��

�� ��

�� ��

��������
�

�

Fig. 1: Implementing switch tables with the help of a centralized
controller

When a switch receives a data frame and does not find a
matching entry in its switch table, it sends a request, carrying
the destination MAC address, to the controller. The controller
has the full knowledge of the switches, the hosts, and the
network topology. It finds a path to the destination. When there
are multiple paths, it selects one based on certain criterion such

as shortest distance. It will then send a control packet, with the
proper switch-table entry, to every switch on the path, including
the requesting switch, as shown in Figure 1. The data frame,
as well as all subsequent frames in the flow, will be forwarded
along this path unimpeded towards its destination. With the
help of the controller, we avoid the broadcast — which may
reach all end hosts of the whole network — when a matching
entry cannot be found.

B. Traditional Routing with A Controller

Next we consider an SDN network where each switch
is a layer-3 switch, which implements a traditional routing
protocol, in addition to its forwarding table. We use OSPF
[16] as example. In the classical implementation of OSPF,
every router periodically sends the state of its adjacent links
to all other routers, and receives such information from other
routers as well. Therefore, all routers have the same view of
the whole network, based on which they compute their routing
tables. Now, with a centralized controller, all routers only need
to periodically send their link states to the controller, which
collects a global view of the network, computes the routing
tables of all routers, and updates the routers with the changes
in their routing tables.

In the original OSPF, each router receives O(|E|) link
states, where E is the set of links in the network. The overall
communication complexity for all routers is O(|N | |E|), where
N is the number of routers. With the controller’s help, routers
do not receive link states. Only the controller does, with a
communication complexity O(|E|) for the whole network. For
the routing-table update, only the difference will be transmitted
and the controller is able to contain such difference to a small
amount by adopting a route computation algorithm that keeps
the stability of the routes. In fact, even in traditional OSPF
networks, the protocol is often configured to compute routes
based on hop counts to avoid route churns [16]. In an SDN
network, the controller has more reasons to adopt such a
strategy because it has another tool, SDN switching, for dealing
with traffic engineering and load balancing on different paths.

C. Integration of SDN Switching with Traditional Switch-
ing/Routing

We first consider the integration of SDN switching with
traditional routing. When a switch receives a packet, it matches
the packet against both the SDN forwarding table and the
traditional routing table. As long as the forwarding table has
a matching entry, it takes the precedence and the packet will
be forwarded accordingly. If the packet belongs to a new flow
and the forwarding table does not have a matching entry, there
are two path selection strategies.

1. Traditional Path First (TPF): New flows will take the
traditional paths by default without causing any immediate
overhead to the controller. For a packet from a new flow,
without a match in the forwarding table, the switch will handle
the packet according to the routing table, which will always
give a matching entry, meaning that it can scale to an arbitrary
number of flows. New flows will not automatically generate
requests to the controller for path selection, in contrast to

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 03,2020 at 10:59:16 UTC from IEEE Xplore. Restrictions apply.

5

what today’s SDN switches do. This property helps reduce
the controller’s communication/computation burden and avoid
a potential performance bottleneck in the system. While all
new flows follow the traditional paths by default, the switches
will monitor their flows, identify the large ones, and estimate
their sizes. Periodically they will send the information of
the identified large flows to the controller, which performs
global optimization to improve network performance by re-
routing some or all of the large flows via optimal SDN paths,
subject to the size constraint of the forwarding tables at the
switches. The formulation of the optimization is dependent on
the user-specified performance and management requirements,
which vary in practice; we will provide a case study in the
next section. The controller will then update the switches’
forwarding tables by installing the new paths; see [21] [7] for
update schemes that ensure packet-level routing consistency.

2. SDN Path First (SPF): New flows will take the SDN paths
by default. For a packet from a new flow, without a match in the
forwarding table, as long as the switch’s forwarding table is not
overflown, it will forward the packet header to the controller
for installing an SDN path. If the forwarding table is full, the
switch forwards the packet based on the routing table.

Although SPF solves the overflow problem of forwarding
tables, it still faces other problems of SDN switching as ex-
plained in Section III-C: per-flow communication/computation
overhead to the controller (even for small flows that contain
a few packets themselves) and extra delay to a flow’s first
packet due to the setup of SDN path. We advocate TPF not
only because it avoids these problems but also because batch
setup of forwarding paths for a set of flows together tend to
produce better global optimization than setup of the paths one
at a time sequentially.

Next, we consider the integration of SDN switching with
traditional switching under TPF. When a switch receives a data
frame, it matches the frame against both the SDN forwarding
table and the traditional switch table. As long as the forwarding
table has a matching entry, the frame will be processed based
on that entry; otherwise, if the switch table has a matching
entry, the frame will be forwarded to the specified output port.
If there is no matching entry in either table, the switch will send
a request, carrying the frame’s destination MAC address, to the
controller, which will establish a traditional path towards the
destination and install proper entries in the forwarding tables
along the path. Again, all switches will monitor their flows and
send the information of large flows to the controller, which will
perform global optimization periodically by re-routing large
flows to optimal SDN paths.

D. Hybrid Path Deployment

When the controller decides to re-route a flow from its
traditional path to an SDN path p, under the traditional wisdom,
the controller must deploy one forwarding rule at every switch
on p, occupying an entry in the switch’s forwarding table
[7] [5]. However, the proposed hybrid switching offers a
new opportunity to save forwarding-table space. Consider an
arbitrary switch s on p. Let t be the output port specified in
the forwarding rule that the controller intends to deploy at s.

If t is also what the traditional path from s to the destination
specifies, there is no need to actually deploy the forwarding
rule because without this rule, switch s will use the traditional
path automatically, which will forward the packet to port t.

S1

S4

S2 S3

S6

f

S5

h1 h2(a)

S1

S4

S2 S3

S6

S5

h1 h2(b)

f

S1

S4

S2 S3

S6

S5

h1 h2(c)

f

S1

S4

S2 S3

S6

S5

h1
h2

(d)

S7
f

Fig. 2: Illustration of hybrid path deployment. (a) Flow f follows the
traditional path, which is specified by solid arrows. (b) Flow f is re-
routed to an SDN path, s1 → s4 → s5 → s6, where the forwarding
rules are shown as dashed arrows. (c) Due to hybrid deployment,
only one forwarding rule at s1 is actually deployed. (d) In a slightly
different example, we show that more than one forwarding rule may
be used to deviate the SDN path from the traditional path for more
than once.

Figure 2 shows an example of hybrid path deployment,
where the top plot shows a flow f passing through a traditional
path from host h1 to host h2. Assume all switches already
have proper matching entries for h2 in their switch tables
(or routing tables), as shown by solid arrows in the top plot.
Now the controller wants to re-route f to a different path,
s1 → s4 → s5 → s6 → h2, requiring four forwarding rules to
be deployed at four switches, as shown by dashed arrows in
the second plot. The forwarding rules at s4, s5 and s6 specify
the same outports as the traditional paths do. With hybrid
deployment, the controller only needs to deploy one forwarding
rule at s1, where the rest of the SDN path follows the traditional
path, as the third plot shows. In a more complicated case of
the fourth plot, two forwarding rules are deployed at s1 and
s6, respectively, allowing the SDN path to deviate from the
traditional path for a second time at s6.

As a side benefit, hybrid path deployment can help reduce
the dependency in the order of forward-rule deployment, which
in turn helps reduce the deployment time. According to [21]
[7], in order to ensure packet-level routing consistency, we

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 03,2020 at 10:59:16 UTC from IEEE Xplore. Restrictions apply.

6

should perform two-phase deployment when re-routing f , with
the first phase installing the forwarding rules at s4, s5 and
s6 (the third plot), and then the second phase installing the
forwarding rule at s1; see the original paper [7] for reasons.
Under hybrid path deployment, we need only one phase of
installing the rule at s1 in this example, which cuts down
deployment time.

E. Per-flow Statistics and Large-flow Identification

According to the OpenFlow specification [22], each entry
in the forwarding table has statistic counters for per-flow
traffic measurement. However, this is insufficient for our design
because many or even most flows will follow the traditional
paths specified in the switch table (or routing table) where
there is no per-flow entry. More importantly, under TPF in
Section III-D, all new flows follow the traditional paths by
default. When we want to find the large ones among them
for re-routing, the counters in the forwarding table will not
help. We need to adopt a new mechanism to collect per-flow
statistics without incurring too much space overhead as the size
of SRAM is limited. The idea is for each switch to produce a
traffic synopsis, a compact data structure that summarizes the
traffic of all flows passing the switch and supports queries on
individual flows.

There is a rich literature on per-flow size measurement under
tight memory. For a few examples, the Multiresolution Space-
Code Bloom Filter (MSCBF) [23] employs multiple Bloom fil-
ters to encode packets with different sampling probabilities; the
Counter Braids (CB) [24], [25] is a counting architecture that
maps flows to counters in multiple tiers for space reduction;
the method of randomized counter sharing (RCS) [26] was
proposed to further reduce memory requirement and processing
time by using virtual storage vectors. We adopt RCS because its
per-packet overhead is very small (updating a single counter)
and it can support an arbitrary number of flows with a pre-
allocated memory space. For completeness, we adapt RCS in
the context of this paper below.

To cover all flows, it is sufficient for only the edge switches
to perform traffic measurement, which relieves the core switch-
es from this overhead. During each measurement period, every
edge switch uses RCS to build a traffic synopsis, which is an
array C of counters. Let c be the size of the allocated array. The
ith counter in the array is denoted as C[i], 0 ≤ i ≤ c−1. Each
flow is mapped to v counters that are pseudo-randomly selected
from C based on the hash output of the flow identifier, which
typically contains addresses/ports from the packet’s headers.
These v counters logically form a storage vector of the flow,
denoted as Cf , where f is the identifier of the flow. The ith
counter of the vector, denoted as Cf [i], 0 ≤ i ≤ v − 1, is
selected from C as follows: Cf [i] ≡ C[Hi(f)], where Hi(...)
is a hash function whose range is [0, c). The operation of online
data encoding is very simple: During each measurement period,
when the switch receives a packet, it extracts the flow identifier
f from the packet’s headers, randomly selects a counter from
Cf , and increases the counter. It should be stressed that the
array C can support a virtually arbitrary number x of flows,
each of which simply takes v counters from C to record its

information. When x � c, the counters will be heavily shared
by different flows. In a shared counter, one flow’s information
is other flows’ noise.

Each edge switch also samples the arrival packets to record
a number of flow identifiers. Large flows have proportionally
higher probabilities to be sampled. At the end of every mea-
surement period, it estimates the size of each sampled flow f
by summing up the counters in Cf after subtracting away a
noise term, which is simply the average counter value across
the whole synopsis. According to the analysis in [26], RCS
gives very accurate estimates for large flows whose sizes are
much larger than the average flow size. This fact is confirmed
in our experiments. Knowing the sizes of the sampled flows,
each edge switch reports its largest k flows and their sizes
to the controller, where k is a system parameter set by the
controller. As we will show in the case study, the computation
overhead of the controller is dependent on the number of flows
to be re-routed. By adjusting this value, the controller has a
way to prevent the switches from overloading itself.

F. Overall Design

�����������
����
������

������!�������
����
������

���""����#�� �

�������
���"�
��
��$ ����

%����&

%����&

�������
����
�

�������
����
�

	
 ���������
�
��������
�

����
�
'

'

(

(

Fig. 3: Illustration of Real-Time Packet Processing

The overall design is illustrated through a packet-processing
flow chart in Figure 3. When a packet arrives at an input
port of a switch, it is processed with forwarding-table lookup
and switch/routing table lookup, which may be carried out
in parallel by ASIC hardware on chip. We adopt the TPF
strategy: The packet will be handled by the forwarding table
if a matching entry exists. If not, the packet will be forwarded
based on the switch/routing table if a matching entry exists.
In case of switch table, there may not exist a matching entry.
When this happens, the switch will report the destination MAC
address to the controller for path selection. In the meantime,
for an edge switch, the packet will also be processed for flow
sampling and synopsis-based traffic measurement.

Besides the above real-time packet processing, at the end
of each measurement period, every edge switch will estimate
the sizes of the sampled flows based on the information
recorded in the synopsis. It reports the largest k flows and
their estimated rates to the controller for possible re-routing,
where a flow’s estimated rate is the estimated flow size divided
by the measurement period.

G. A Case Study on Re-routing via Optimal SDN Paths
The component missing so far is the controller’s global

optimization in re-routing large flows via SDN paths. However,

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 03,2020 at 10:59:16 UTC from IEEE Xplore. Restrictions apply.

7

the implementation of this component is directly related to
the performance goal and the management policies, which
are set by the system admin and vary greatly in practice.
Nevertheless, the hybrid switching architecture in the previous
section has an open design that can accommodate any imple-
mentation of path selection. For the purpose of completeness
and numerical evaluation, we provide a case study below with
one implementation; its properties should not be viewed as
limitation of our hybrid switching design because this specific
implementation can be replaced with other implementations
in practice without affecting the rest of the overall design as
discussed in Section IV-F.

We first give the notations: Denote the set of n switches as
S = {s1, ..., sn}, and the set of m hosts (terminals) as H =
{h1, ..., hm}. The network topology is modeled as a graph G =
(S∪H,E), where E is the set of links. Let c(e) be the capacity
of a link e ∈ E and l(e) be the load of the link. The switches
measure traffic loads on all their ports (i.e., adjacent links)
and make the information available to the controller through
Openflow [1].

From the large flows reported by the switches, the controller
selects a subset Π of the largest ones for re-routing. The size
of Π may be constrained by the budget of execution time for
solving the optimization problem; the relationship between the
size of Π and the execution time can be roughly estimated
based on the past executions. Let r(f) be the estimated rate
of flow f ∈ Π, which is reported by the edge switch of the
flow. Let P(f) be the set of candidate paths for flow f . P(f) is
determined based on the management policies and performance
objectives. For example, if there are too many possible paths
that satisfy the management policies, we may include only a
certain number of the best ones under a certain performance
criterion, such as having the shortest number of hops or having
the large capacities. P(f) also contains the path p∗(f) that the
flow is currently routed through.

Let ypf ∈ {0, 1} be an indicator variable for whether flow
f will be routed on a path p ∈ P(f). Let T (s) be the
number of residual entries in the forwarding table at switch
s. Let I(f, p, s) be a binary value for hybrid path deployment
(Section IV-D): if path p assigned to flow f overlaps with
the flow’s traditional path at switch s, then there is no need
to deploy an entry on the forwarding table of switch s, i.e.,
I(f, p, s) = 0; otherwise I(f, p, s) = 1. We formalize the
global load-balancing optimization as a non-linear program.

min λ

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(e) = l(e)−∑
f∈Π:e∈p∗(f) r(f), ∀e ∈ E∑

p∈P(f) y
p
f = 1, ∀f ∈ Π

b(e) +
∑

f∈Π

∑
p∈P(f):e∈p y

p
fr(f) ≤ λ · c(e), ∀e ∈ E∑

f∈Π

∑
p∈P(f):s∈p y

p
f · I(f, p, s) ≤ T (s), ∀s ∈ S

ypf ∈ {0, 1}, ∀p, f
λ ≤ 1.

(1)
The first set of equations computes the background traffic load
b(e), ∀e ∈ E, when the flows in Π are taken out. The second
set of equations requires that flow f ∈ Π is not splittable; it will
be forwarded through a single path from P(f). The third set

of inequalities states that the traffic load on each link e, which
is the sum of background traffic load and traffic from the flows
scheduled on the path, should not exceed λ · c(e), where λ is
the load-balance factor (less than 1) that will be minimized.
The fourth set of inequalities describes the size constraints of
the forwarding tables. The objective is to minimize λ. Globally
reducing the link loads and achieving load balance have many
benefits. It helps prevent large queuing delays that happen
when λ approaches towards 1. It leaves room for new flows
or allows the existing flows to increase their rates for better
network throughput. It indirectly helps balance the occupation
of the forwarding tables as flows are spread among alternative
paths. We point out that the above non-linear program will
always have at least one feasible solution — all flows f ∈ Π
take their current paths p∗(f), which means no re-routing and
all flows keep the status quo.

The integer programming problem can be solved numerically
for a small network topology with the size of Π determined by
the controller. There are also approximate methods that convert
integer programming into linear programming for which effi-
cient numerical solutions exist. An example is relaxation and
random rounding [27]. It relaxes Eq. (1) by replacing the fifth
line of integer constraints with ypf ≥ 0, turning the problem
into linear programming. After solving the linear programming
problem, we round ypf to zero or one probabilistically based
on its value. We use this method in the numerical evaluation
of the proposed work and it produces very good results.

V. NUMERICAL EVALUATION

In this section, we will present the results from large-scale
simulation (since one focus of this paper is scalability).

A. Performance Metrics and Evaluation Setting

We evaluate the proposed hybrid switching (HS) through
simulations and compare it with the most-related, state-of-the-
art work of DevoFlow [4]. Both of them try to improve the
scalability of a large SDN system, but their design goals are
somewhat different: The main goal of HS is to address the
problem of limited forwarding-table size and to reduce the
overhead of the controller. The main goal of DevoFlow is to
reduce the overhead of the controller, while achieving high
network performance.

We use the following performance metrics in our numerical
evaluation: (1) the maximum number of forwarding rules (or
flow entries needed) on any switch at any time during the
simulation; (2) the average number of forwarding rules per
switch at any time during the simulation; (3) the maximum
network throughput; (4) the maximum load factor of any link;
(5) the communication overhead to/from the controller. During
a simulation run, at each time instance, we measure the max-
imum number of forwarding rules per switch and the average
number of forwarding rules on any switch. We use their largest
values over time during the simulation as the first two metrics.
As we continuously increase the number of flows, we measure
the maximum throughput that the network can support. The
load factor of a link is the traffic load divided by the link
capacity. The load balancing metric is the maximum load factor

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 03,2020 at 10:59:16 UTC from IEEE Xplore. Restrictions apply.

8

1

2

3

4

5

6

10 20 30 40 50 60 70 80M
ax

.
F

lo
w

 E
n
tr

ie
s

(×
 1

0
 3

)

Number of Flows (× 10
4
)

DevoFlow

HS

Fig. 4: Maximum number of flow
entries without FTS constraint

1

2

3

4

10 20 30 40 50 60 70 80A
v
g
.
F

lo
w

 E
n
tr

ie
s

(×
 1

0
 3

)

Number of Flows (× 10
4
)

DevoFlow

HS

Fig. 5: Average number of flow
entries without FTS constraint

 0
 100
 200
 300
 400
 500
 600
 700

10 20 30 40 50 60 70 80

T
h
ro

u
g
h
tp

u
t

(G
b
p
s)

Number of Flows (× 10
4
)

HS

DevoFlow

Fig. 6: Network throughput with-
out FTS constraint

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70 80

M
ax

.
L

o
ad

 F
ac

to
r

Number of Flows (× 10
4
)

HS

DevoFlow

Fig. 7: Maximum load factor with-
out FTS constraint

60

120

180

240

300

10 20 30 40 50 60 70 80C
o
n
tr

o
l

O
v
er

h
ea

d
 (

M
b
p
s)

Number of Flows (× 10
4
)

DevoFlow

HS

Fig. 8: Communication overhead
without FTS constraint

0.3

0.6

0.9

1.2

1.5

10 20 30 40 50 60 70 80M
ax

.
F

lo
w

 E
n
tr

ie
s

(×
 1

0
 3

)

Number of Flows (× 10
4
)

DevoFlow

HS

Fig. 9: Maximum number of flow
entries with FTS constraint

0.3

0.6

0.9

1.2

1.5

10 20 30 40 50 60 70 80A
v
g
.
F

lo
w

 E
n
tr

ie
s

(×
 1

0
 3

)

Number of Flows (× 10
4
)

DevoFlow

HS

Fig. 10: Average number of flow
entries with FTS constraint

 0
 100
 200
 300
 400
 500
 600
 700

10 20 30 40 50 60 70 80

T
h
ro

u
g
h
tp

u
t

(G
b
p
s)

Number of Flows (× 10
4
)

HS

DevoFlow

Fig. 11: Network throughput with
FTS constraint

 0

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50 60 70 80

M
ax

.
L

o
ad

 F
ac

to
r

Number of Flows (× 10
4
)

DevoFlow

HS

Fig. 12: Maximum load factor
with FTS constraint

30

60

90

120

150

180

10 20 30 40 50 60 70 80C
o
n
tr

o
l

O
v
er

h
ea

d
 (

M
b
p
s)

Number of Flows (× 10
4
)

DevoFlow

HS

Fig. 13: Communication overhead
with FTS constraint

among all links. We also measure the total communication
traffic to/from the controller, divided by the time period of
simulation, which gives the fifth metric. By default, each switch
will report the traffic estimation information of the largest
1,500 (elephant) flows at most to the controller.

Our simulations adopt the two-dimensional HyperX topol-
ogy [28], which has 81 access switches, each attached to 16
other switches. All links are 1Gbps, and 20 servers will be
attached with each access switch. So, the HyperX topology has
1620 servers. We use power law for the flow-size distribution,
where 20% of all flows account for 80% of traffic volume [20].
We generate three types of flows: (1) random flows, whose
sources and destinations are randomly picked; (2) server flows,
which simulate the traffic between random hosts and a number
of designated servers, e.g., mail servers and web servers;
(3) associative flows, which simulate the traffic between a
subnet and a server, e.g., communications between the finance
department and the finance database or between a hospital and
a datacenter that houses the patient data. Each type of flows
accounts for one third of total traffic.

The simulations are performed under two scenarios. The
first scenario has no forwarding-table size (FTS) constraint,
assuming that the switches have sufficient space to handle all
flows. This hypothetical scenario tests the performance of HS
(DevoFlow) when the table size is not a limiting issue. The
second scenario has an FTS constraint and tests how well HS

(DevoFlow) performs when the table size becomes a problem.

B. Performance Comparison without FTS Constraint

Our first set of simulations compares HS and DevoFlow in
the scenario without FTS constraint. The results are shown
in Figures 4-8, where the horizontal axis is the number of
flows in the network, ranging from 10×104 to 80×104. In
Figures 4 and 5, as the number of flows increases, there are
more elephant flows as well. As a result, the maximum/average
numbers of flow entries (or forwarding rules) increase in both
HS and DevoFlow. In comparison, the proposed HS solution
uses much fewer flow entries than DevoFlow. For example,
when there are 50×104 flows (about 300 flows per server), HS
uses a maximum number of 600 flow entries on a switch, while
DevoFlow uses 3,100; HS uses 400 flow entries per switch
on average, while DevoFlow needs 2,200 on average. More
specifically, HS reduces the required flow entries by about
80.5% compared with DevoFlow. That’s because our hybrid
path deployment mechanism helps to reduce the required flow
entries by combining traditional routing and SDN routing.

Figures 6-7 show that HS and DevoFlow achieve similar net-
work performance, including throughput and load balancing.
The reason is that without FTS constraint, both designs can
dynamically schedule the elephant flows for efficient routing.
Figure 8 shows that HS has much smaller communication
overhead at the controller than DevoFlow. As the number of
flows increases, DevoFlow deploys more forwarding rules than
HS (see Figure 5), which results in higher control overhead.
For example, when there are 80×104 flows (about 500 flows
per server), the control overheads of HS and DevoFlow are
about 140Mbps and 290Mbps, respectively.

C. Performance Comparison with FTS Constraint

The second set of simulations compares HS and DevoFlow
with FTS constraint, where the forwarding table size is set
to 1,500 entries [4]. The results are shown in Figures 9-
13, where the horizontal axis is the number of flows in the

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 03,2020 at 10:59:16 UTC from IEEE Xplore. Restrictions apply.

9

network. In Figures 9-10, HS needs much fewer flow entries
than DevoFlow, whose table is saturated much earlier. As an
example, when there are 50×104 flows in the network, HS uses
a maximum number of 800 flow entries in any switch, while
DevoFlow uses 1,500 (with the forwarding table becoming
full); HS uses an average of 400 flow entries per switch, while
DevoFlow uses 1,500 on average, meaning that all forwarding
tables are saturated. This saturation has a performance impact,
as shown below.

When the number of flows is less than 30×104, the forward-
ing table is not made full by DevoFlow in Figure 10. In this
case, HS and DevoFlow achieve similar network performance,
including throughput and load balancing, as shown in Figures
11-12. On the contrary, when the number of flows is more than
30×104 and the forwarding table is made full by DevoFlow,
HS outperforms DevoFlow because the routing flexibility of
the latter is constrained. For example, when there are 80×104

flows in the network, HS improves network throughput by 63%
when comparing with DevoFlow. Note that, From Figure 12,
when the number of flows exceeds 60×104, the maximum load
factor is close to 1 for both DevoFlow and HS. However, HS
can forward more flows than DevoFlow by Fig. 11. Since HS
deploys a fewer number of forwarding rules than DevoFlow, it
incurs smaller control overhead, as shown in Figure 13.

VI. CONCLUSION

In this paper, we have designed a novel hybrid switching
mechanism, which integrates traditional switching and SDN
switching for the purpose of achieving both scalability and
optimal performance. Moreover, a hybrid path deployment
method has been presented to reduce the required forwarding
rules. Numerical evaluation demonstrates the superior perfor-
mance of hybrid switching when comparing with the DevoFlow
solution. In the future, we will study efficient flow prediction
mechanism, which may help to reduce the number of forward-
ing rules and to enhance the network route performance.

ACKNOWLEDGEMENT

The corresponding author of this paper is He Huang. This
search of Xu and Zhao is supported by NSFC under No.
61472383, U1301256 and 61472385, and NSF of Jiangsu
in China under No. BK20161257. The research of Huang
is partially supported by NSFC under Grant No. 61572342
and 61672369, NSF of Jiangsu Province under Grant No.
BK20151240 and BK20161258. The research of Chen is
supported by NSF under No. STC-1562485.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-
deployed software defined wan,” in ACM SIGCOMM Computer Commu-
nication Review, vol. 43, no. 4. ACM, 2013, pp. 3–14.

[3] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in IEEE INFOCOM, 2013, pp. 2211–2219.

[4] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Shar-
ma, and S. Banerjee, “Devoflow: Scaling flow management for high-
performance networks,” in ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4. ACM, 2011, pp. 254–265.

[5] R. Cohen, L. Lewin-Eytan, J. S. Naor et al., “On the effect of forwarding
table size on sdn network utilization,” in Proc. IEEE INFOCOM. IEEE,
2014, pp. 1734–1742.

[6] N. Handigol, S. Seetharaman, M. Flajslik, A. Gember, N. McKeown,
G. Parulkar, A. Akella, N. Feamster, R. Clark, A. Krishnamurthy et al.,
“Aster* x: Load-balancing web traffic over wide-area networks,” 2011.

[7] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rex-
ford, and R. Wattenhofer, “Dynamic scheduling of network updates,” in
Proceedings of the 2014 ACM conference on SIGCOMM. ACM, 2014,
pp. 539–550.

[8] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and re-
search challenges of hybrid software defined networks,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 2, pp. 70–75, 2014.

[9] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering in
sdn/ospf hybrid network,” in Network Protocols (ICNP), 2014 IEEE 22nd
International Conference on. IEEE, 2014, pp. 563–568.

[10] J. He and W. Song, “Achieving near-optimal traffic engineering in
hybrid software defined networks,” in IFIP Networking Conference (IFIP
Networking), 2015. IEEE, 2015, pp. 1–9.

[11] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari,
“Plug-n-serve: Load-balancing web traffic using openflow,” ACM SIG-
COMM Demo, 2009.

[12] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
vol. 10, 2010, pp. 19–19.

[13] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[14] H. Huang, S. Guo, P. Li, B. Ye, and I. Stojmenovic, “Joint optimization
of rule placement and traffic engineering for qos provisioning in software
defined network,” IEEE Transactions on Computers, no. 1, 2015.

[15] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table
lookup using extended bloom filter: an aid to network processing,” ACM
SIGCOMM Computer Communication Review, vol. 35, no. 4, pp. 181–
192, 2005.

[16] J. Moy, “Ospf version 2,” 1997.
[17] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (bgp-4),”

Tech. Rep., 2005.
[18] “The openflow switch,” openflowswitch.org.
[19] K. Kannan and S. Banerjee, “Compact tcam: Flow entry compaction in

tcam for power aware sdn,” in International Conference on Distributed
Computing and Networking. Springer, 2013, pp. 439–444.

[20] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings of
the 9th ACM SIGCOMM conference on Internet measurement conference.
ACM, 2009, pp. 202–208.

[21] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in Proceedings of the ACM SIG-
COMM 2012 conference on Applications, technologies, architectures,
and protocols for computer communication. ACM, 2012, pp. 323–334.

[22] O. S. Specification-Version, “1.4.0,” 2013.
[23] A. Kumar, J. Xu, and J. Wang, “Space-code bloom filter for efficient

per-flow traffic measurement,” IEEE Journal on Selected Areas in Com-
munications, vol. 24, no. 12, pp. 2327–2339, 2006.

[24] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter Braids: A Novel Counter Architecture for Per-Flow Measure-
ment,” Proc. of ACM SIGMETRICS, June 2008.

[25] Y. Lu and B. Prabhakar, “Robust Counting Via Counter Braids: An
Error-Resilient Network Measurement Architecture,” Proc. of IEEE
INFOCOM, April 2009.

[26] T. Li, S. Chen, and Y. Ling, “Fast and compact per-flow traffic measure-
ment through randomized counter sharing,” Proc. of IEEE INFOCOM,
pp. 1799–1807, April 2011.

[27] T. Friedrich and T. Sauerwald, “Near-perfect load balancing by random-
ized rounding,” in Proceedings of the forty-first annual ACM symposium
on Theory of computing. ACM, 2009, pp. 121–130.

[28] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber, “Hy-
perx: topology, routing, and packaging of efficient large-scale networks,”
in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. ACM, 2009, p. 41.

IEEE INFOCOM 2017 - IEEE Conference on Computer Communications

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on December 03,2020 at 10:59:16 UTC from IEEE Xplore. Restrictions apply.

